
4
Euclid’s algorithm

In this chapter, we discuss Euclid’s algorithm for computing greatest common
divisors, which, as we will see, has applications far beyond that of just computing
greatest common divisors.

4.1 The basic Euclidean algorithm
We consider the following problem: given two non-negative integers a and b, com-
pute their greatest common divisor, gcd(a, b). We can do this using the well-known
Euclidean algorithm, also called Euclid’s algorithm.

The basic idea is the following. Without loss of generality, we may assume that
a ≥ b ≥ 0. If b = 0, then there is nothing to do, since in this case, gcd(a, 0) = a.
Otherwise, b > 0, and we can compute the integer quotient q := ba/bc and remain-
der r := a mod b, where 0 ≤ r < b. From the equation

a = bq + r,

it is easy to see that if an integer d divides both b and r, then it also divides a; like-
wise, if an integer d divides a and b, then it also divides r. From this observation, it
follows that gcd(a, b) = gcd(b, r), and so by performing a division, we reduce the
problem of computing gcd(a, b) to the “smaller” problem of computing gcd(b, r).

The following theorem develops this idea further:

Theorem 4.1. Let a, b be integers, with a ≥ b ≥ 0. Using the division with
remainder property, define the integers r0, r1, . . . , rλ+1 and q1, . . . , qλ, where λ ≥ 0,
as follows:

74

4.1 The basic Euclidean algorithm 75

a = r0,

b = r1,

r0 = r1q1 + r2 (0 < r2 < r1),
...

ri−1 = riqi + ri+1 (0 < ri+1 < ri),
...

rλ−2 = rλ−1qλ−1 + rλ (0 < rλ < rλ−1),

rλ−1 = rλqλ (rλ+1 = 0).

Note that by definition, λ = 0 if b = 0, and λ > 0, otherwise. Then we
have rλ = gcd(a, b). Moreover, if b > 0, then λ ≤ log b/ logφ + 1, where
φ := (1 +

√
5)/2 ≈ 1.62.

Proof. For the first statement, one sees that for i = 1, . . . , λ, we have ri−1 =
riqi + ri+1, from which it follows that the common divisors of ri−1 and ri are the
same as the common divisors of ri and ri+1, and hence gcd(ri−1, ri) = gcd(ri, ri+1).
From this, it follows that

gcd(a, b) = gcd(r0, r1) = · · · = gcd(rλ, rλ+1) = gcd(rλ, 0) = rλ.

To prove the second statement, assume that b > 0, and hence λ > 0. If λ = 1, the
statement is obviously true, so assume λ > 1. We claim that for i = 0, . . . , λ − 1,
we have rλ−i ≥ φi. The statement will then follow by setting i = λ − 1 and taking
logarithms.

We now prove the above claim. For i = 0 and i = 1, we have

rλ ≥ 1 = φ0 and rλ−1 ≥ rλ + 1 ≥ 2 ≥ φ1.

For i = 2, . . . , λ − 1, using induction and applying the fact that φ2 = φ + 1, we
have

rλ−i ≥ rλ−(i−1) + rλ−(i−2) ≥ φi−1 + φi−2 = φi−2(1 + φ) = φi,

which proves the claim. 2

Example 4.1. Suppose a = 100 and b = 35. Then the numbers appearing in
Theorem 4.1 are easily computed as follows:

i 0 1 2 3 4
ri 100 35 30 5 0
qi 2 1 6

76 Euclid’s algorithm

So we have gcd(a, b) = r3 = 5. 2

We can easily turn the scheme described in Theorem 4.1 into a simple algorithm:

Euclid’s algorithm. On input a, b, where a and b are integers such that a ≥ b ≥ 0,
compute d = gcd(a, b) as follows:

r ← a, r′ ← b

while r′ 6= 0 do
r′′ ← r mod r′

(r, r′) ← (r′, r′′)
d← r

output d

We now consider the running time of Euclid’s algorithm. Naively, one could
estimate this as follows. Suppose a and b are `-bit numbers. The number of
divisions performed by the algorithm is the number λ in Theorem 4.1, which is
O(`). Moreover, each division involves numbers of ` bits or fewer in length, and
so takes time O(`2). This leads to a bound on the running time of O(`3). However,
as the following theorem shows, this cubic running time bound is well off the mark.
Intuitively, this is because the cost of performing a division depends on the length
of the quotient: the larger the quotient, the more expensive the division, but also,
the more progress the algorithm makes towards termination.

Theorem 4.2. Euclid’s algorithm runs in time O(len(a) len(b)).

Proof. We may assume that b > 0. With notation as in Theorem 4.1, the running
time is O(T), where

T =
λ
∑

i=1

len(ri) len(qi) ≤ len(b)
λ
∑

i=1

len(qi)

≤ len(b)
λ
∑

i=1

(len(ri−1) − len(ri) + 1) (see Exercise 3.24)

= len(b)(len(r0) − len(rλ) + λ) (telescoping the sum)

≤ len(b)(len(a) + log b/ logφ + 1) (by Theorem 4.1)

= O(len(a) len(b)). 2

EXERCISE 4.1. With notation as in Theorem 4.1, give a direct and simple proof
that for each i = 1, . . . , λ, we have ri+1 ≤ ri−1/2. Thus, with every two division
steps, the bit length of the remainder drops by at least 1. Based on this, give an
alternative proof that the number of divisions is O(len(b)).

4.2 The extended Euclidean algorithm 77

EXERCISE 4.2. Show how to compute lcm(a, b) in time O(len(a) len(b)).

EXERCISE 4.3. Let a, b ∈ Z with a ≥ b ≥ 0, let d := gcd(a, b), and assume
d > 0. Suppose that on input a, b, Euclid’s algorithm performs λ division steps,
and computes the remainder sequence {ri}λ+1

i=0 and the quotient sequence {qi}λi=1
(as in Theorem 4.1). Now suppose we run Euclid’s algorithm on input a/d, b/d.
Show that on these inputs, the number of division steps performed is also λ, the
remainder sequence is {ri/d}λ+1

i=0 , and the quotient sequence is {qi}λi=1.

EXERCISE 4.4. Show that if we run Euclid’s algorithm on input a, b, where a ≥
b > 0, then its running time is O(len(a/d) len(b)), where d := gcd(a, b).

EXERCISE 4.5. Let λ be a positive integer. Show that there exist integers a, b with
a > b > 0 and λ ≥ log b/ logφ, such that Euclid’s algorithm on input a, b performs
at least λ divisions. Thus, the bound in Theorem 4.1 on the number of divisions is
essentially tight.

EXERCISE 4.6. This exercise looks at an alternative algorithm for computing
gcd(a, b), called the binary gcd algorithm. This algorithm avoids complex opera-
tions, such as division and multiplication; instead, it relies only on subtraction, and
division and multiplication by powers of 2, which, assuming a binary representa-
tion of integers (as we are), can be very efficiently implemented using “right shift”
and “left shift” operations. The algorithm takes positive integers a and b as input,
and runs as follows:

r ← a, r′ ← b, e← 0
while 2 | r and 2 | r′ do r ← r/2, r′ ← r′/2, e← e + 1
repeat

while 2 | r do r ← r/2
while 2 | r′ do r′ ← r′/2
if r′ < r then (r, r′) ← (r′, r)
r′ ← r′ − r

until r′ = 0
d← 2e · r
output d

Show that this algorithm correctly computes gcd(a, b), and runs in time O(`2),
where ` := max(len(a), len(b)).

4.2 The extended Euclidean algorithm
Let a and b be integers, and let d := gcd(a, b). We know by Theorem 1.8 that there
exist integers s and t such that as + bt = d. The extended Euclidean algorithm

78 Euclid’s algorithm

allows us to efficiently compute s and t. The next theorem defines the quantities
computed by this algorithm, and states a number of important facts about them;
these facts will play a crucial role, both in the analysis of the running time of the
algorithm, as well as in applications of the algorithm that we will discuss later.

Theorem 4.3. Let a, b, r0, . . . , rλ+1 and q1, . . . , qλ be as in Theorem 4.1. Define
integers s0, . . . , sλ+1 and t0, . . . , tλ+1 as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi (i = 1, . . . , λ).

Then:

(i) for i = 0, . . . , λ+1, we have asi+bti = ri; in particular, asλ+btλ = gcd(a, b);

(ii) for i = 0, . . . , λ, we have siti+1 − tisi+1 = (−1)i;

(iii) for i = 0, . . . , λ + 1, we have gcd(si, ti) = 1;

(iv) for i = 0, . . . , λ, we have titi+1 ≤ 0 and |ti| ≤ |ti+1|; for i = 1, . . . , λ, we
have sisi+1 ≤ 0 and |si| ≤ |si+1|;

(v) for i = 1, . . . , λ + 1, we have ri−1|ti| ≤ a and ri−1|si| ≤ b;
(vi) if a > 0, then for i = 1, . . . , λ + 1, we have |ti| ≤ a and |si| ≤ b; if a > 1

and b > 0, then |tλ| ≤ a/2 and |sλ| ≤ b/2.

Proof. (i) is easily proved by induction on i. For i = 0, 1, the statement is clear.
For i = 2, . . . , λ + 1, we have

asi + bti = a(si−2 − si−1qi−1) + b(ti−2 − ti−1qi−1)

= (asi−2 + bti−2) − (asi−1 + bti−1)qi−1

= ri−2 − ri−1qi−1 (by induction)

= ri.

(ii) is also easily proved by induction on i. For i = 0, the statement is clear. For
i = 1, . . . , λ, we have

siti+1 − tisi+1 = si(ti−1 − tiqi) − ti(si−1 − siqi)
= −(si−1ti − ti−1si) (after expanding and simplifying)

= −(−1)i−1 (by induction)

= (−1)i.

(iii) follows directly from (ii).
For (iv), one can easily prove both statements by induction on i. The state-

ment involving the ti’s is clearly true for i = 0. For i = 1, . . . , λ, we have

4.2 The extended Euclidean algorithm 79

ti+1 = ti−1 − tiqi; moreover, by the induction hypothesis, ti−1 and ti have opposite
signs and |ti| ≥ |ti−1|; it follows that |ti+1| = |ti−1| + |ti|qi ≥ |ti|, and that the sign
of ti+1 is the opposite of that of ti. The proof of the statement involving the si’s is
the same, except that we start the induction at i = 1.

For (v), one considers the two equations:

asi−1 + bti−1 = ri−1,

asi + bti = ri.

Subtracting ti−1 times the second equation from ti times the first, and applying
(ii), we get ±a = tiri−1 − ti−1ri; consequently, using the fact that ti and ti−1 have
opposite sign, we obtain

a = |tiri−1 − ti−1ri| = |ti|ri−1 + |ti−1|ri ≥ |ti|ri−1.

The inequality involving si follows similarly, subtracting si−1 times the second
equation from si times the first.

(vi) follows from (v) and the following observations: if a > 0, then ri−1 > 0 for
i = 1, . . . , λ + 1; if a > 1 and b > 0, then λ > 0 and rλ−1 ≥ 2. 2

Example 4.2. We continue with Example 4.1. The si’s and ti’s are easily computed
from the qi’s:

i 0 1 2 3 4
ri 100 35 30 5 0
qi 2 1 6
si 1 0 1 -1 7
ti 0 1 -2 3 -20

So we have gcd(a, b) = 5 = −a + 3b. 2

We can easily turn the scheme described in Theorem 4.3 into a simple algorithm:

The extended Euclidean algorithm. On input a, b, where a and b are integers
such that a ≥ b ≥ 0, compute integers d, s, and t, such that d = gcd(a, b) and
as + bt = d, as follows:

r ← a, r′ ← b

s← 1, s′ ← 0
t← 0, t′ ← 1
while r′ 6= 0 do

q ← br/r′c, r′′ ← r mod r′

(r, s, t, r′, s′, t′) ← (r′, s′, t′, r′′, s − s′q, t − t′q)
d← r

output d, s, t

80 Euclid’s algorithm

Theorem 4.4. The extended Euclidean algorithm runs in time O(len(a) len(b)).

Proof. We may assume that b > 0. It suffices to analyze the cost of computing the
coefficient sequences {si} and {ti}. Consider first the cost of computing all of the
ti’s, which is O(T), where T =

∑λ
i=1 len(ti) len(qi). We have t1 = 1 and, by part

(vi) of Theorem 4.3, we have |ti| ≤ a for i = 2, . . . , λ. Arguing as in the proof of
Theorem 4.2, we have

T ≤ len(q1) + len(a)
λ
∑

i=2

len(qi)

≤ len(a) + len(a)(len(r1) − len(rλ) + λ − 1) = O(len(a) len(b)).

An analogous argument shows that one can also compute all of the si’s in time
O(len(a) len(b)), and in fact, in time O(len(b)2). 2

For the reader familiar with the basics of the theory of matrices and determinants,
it is instructive to view Theorem 4.3 as follows. For i = 1, . . . , λ, we have

(

ri
ri+1

)

=
(

0 1
1 −qi

)(

ri−1

ri

)

.

Recursively expanding the right-hand side of this equation, we have

(

ri
ri+1

)

=

Mi :=
︷ ︸︸ ︷

(

0 1
1 −qi

)

· · ·
(

0 1
1 −q1

)(

a

b

)

.

This defines the 2 × 2 matrix Mi for i = 1, . . . , λ. If we additionally define M0 to
be the 2 × 2 identity matrix, then it is easy to see that for i = 0, . . . , λ, we have

Mi =
(

si ti
si+1 ti+1

)

.

From these observations, part (i) of Theorem 4.3 is immediate, and part (ii) follows
from the fact that Mi is the product of i matrices, each of determinant −1, and the
determinant of Mi is evidently siti+1 − tisi+1.

EXERCISE 4.7. In our description of the extended Euclidean algorithm, we made
the restriction that the inputs a and b satisfy a ≥ b ≥ 0. Using this restricted
algorithm as a subroutine, give an algorithm that works without any restrictions on
its input.

EXERCISE 4.8. With notation and assumptions as in Exercise 4.3, suppose that on
input a, b, the extended Euclidean algorithm computes the coefficient sequences

4.2 The extended Euclidean algorithm 81

{si}λ+1
i=0 and {ti}λ+1

i=0 (as in Theorem 4.3). Show that the extended Euclidean algo-
rithm on input a/d, b/d computes the same coefficient sequences.

EXERCISE 4.9. Assume notation as in Theorem 4.3. Show that:
(a) for all i = 2, . . . , λ, we have |ti| < |ti+1| and ri−1|ti| < a, and that for all

i = 3, . . . , λ, we have |si| < |si+1| and ri−1|si| < b;
(b) siti ≤ 0 for i = 0, . . . , λ + 1;
(c) if d := gcd(a, b) > 0, then |sλ+1| = b/d and |tλ+1| = a/d.

EXERCISE 4.10. One can extend the binary gcd algorithm discussed in Exer-
cise 4.6 so that in addition to computing d = gcd(a, b), it also computes s and
t such that as + bt = d. Here is one way to do this (again, we assume that a and b
are positive integers):

r ← a, r′ ← b, e← 0
while 2 | r and 2 | r′ do r ← r/2, r′ ← r′/2, e← e + 1
ã← r, b̃ ← r′, s← 1, t← 0, s′ ← 0, t′ ← 1
repeat

while 2 | r do
r ← r/2
if 2 | s and 2 | t then s ← s/2, t← t/2

else s ← (s + b̃)/2, t← (t − ã)/2
while 2 | r′ do

r′ ← r′/2
if 2 | s′ and 2 | t′ then s′ ← s′/2, t′ ← t′/2

else s′ ← (s′ + b̃)/2, t′ ← (t′ − ã)/2
if r′ < r then (r, s, t, r′, s′, t′) ← (r′, s′, t′, r, s, t)
r′ ← r′ − r, s′ ← s′ − s, t′ ← t′ − t

until r′ = 0
d← 2e · r, output d, s, t

Show that this algorithm is correct and that its running time is O(`2), where
` := max(len(a), len(b)). In particular, you should verify that all of the divisions
by 2 performed by the algorithm yield integer results. Moreover, show that the
outputs s and t are of length O(`).

EXERCISE 4.11. Suppose we modify the extended Euclidean algorithm so that it
computes balanced remainders; that is, for i = 1, . . . , λ, the values qi and ri+1 are
computed so that ri−1 = riqi + ri+1 and −|ri|/2 ≤ ri+1 < |ri|/2. Assume that
the si’s and the ti’s are computed by the same formula as in Theorem 4.3. Give
a detailed analysis of the running time of this algorithm, which should include an
analysis of the number of division steps, and the sizes of the si’s and ti’s.

82 Euclid’s algorithm

4.3 Computing modular inverses and Chinese remaindering
An important application of the extended Euclidean algorithm is to the problem of
computing multiplicative inverses in Zn.

Theorem 4.5. Suppose we are given integers n, b, where 0 ≤ b < n. Then in
time O(len(n)2), we can determine if b is relatively prime to n, and if so, compute
b−1 mod n.

Proof. We may assume n > 1, since when n = 1, we have b = 0 = b−1 mod n. We
run the extended Euclidean algorithm on input n, b, obtaining integers d, s, and t,
such that d = gcd(n, b) and ns + bt = d. If d 6= 1, then b does not have a multi-
plicative inverse modulo n. Otherwise, if d = 1, then t is a multiplicative inverse
of b modulo n; however, it may not lie in the range {0, . . . , n − 1}, as required. By
part (vi) of Theorem 4.3, we have |t| ≤ n/2 < n. Thus, if t ≥ 0, then b−1 mod n is
equal to t; otherwise, b−1 mod n is equal to t+ n. Based on Theorem 4.4, it is clear
that all the computations can be performed in time O(len(n)2). 2

Example 4.3. Suppose we are given integers a, b, n, where 0 ≤ a < n, and
0 ≤ b < n, and we want to compute a solution z to the congruence az ≡ b (mod n),
or determine that no such solution exists. Based on the discussion in Example 2.5,
the following algorithm does the job:

d← gcd(a, n)
if d - b then

output “no solution”
else

a′ ← a/d, b′ ← b/d, n′ ← n/d

t← (a′)−1 mod n′

z← tb′ mod n′

output z

Using Euclid’s algorithm to compute d, and the extended Euclidean algorithm
to compute t (as in Theorem 4.5), the running time of this algorithm is clearly
O(len(n)2). 2

We also observe that the Chinese remainder theorem (Theorem 2.6) can be made
computationally effective:

Theorem 4.6 (Effective Chinese remainder theorem). Suppose we are given
integers n1, . . . , nk and a1, . . . , ak, where the family {ni}ki=1 is pairwise relatively
prime, and where ni > 1 and 0 ≤ ai < ni for i = 1, . . . , k. Let n :=

∏k
i=1 ni. Then

in time O(len(n)2), we can compute the unique integer a satisfying 0 ≤ a < n and
a ≡ ai (mod ni) for i = 1, . . . , k.

4.3 Computing modular inverses and Chinese remaindering 83

Proof. The algorithm is a straightforward implementation of the proof of Theo-
rem 2.6, and runs as follows:

n←
∏k

i=1 ni
for i← 1 to k do

n∗i ← n/ni, bi ← n∗i mod ni, ti ← b−1
i mod ni, ei ← n∗i ti

a←
(

∑k
i=1 aiei

)

mod n

We leave it to the reader to verify the running time bound. 2

EXERCISE 4.12. In Example 4.3, show that one can easily obtain the quantities
d, a′, n′, and t from the data computed in just a single execution of the extended
Euclidean algorithm.

EXERCISE 4.13. In this exercise, you are to make the result of Theorem 2.17
effective. Suppose that we are given a positive integer n, two elements α, β ∈ Z∗n,
and integers ` and m, such that α` = βm and gcd(`,m) = 1. Show how to compute
γ ∈ Z∗n such that α = γm in time O(len(`) len(m) + (len(`) + len(m)) len(n)2).

EXERCISE 4.14. In this exercise and the next, you are to analyze an “incremental
Chinese remaindering algorithm.” Consider the following algorithm, which takes
as input integers a1, n1, a2, n2 satisfying

0 ≤ a1 < n1, 0 ≤ a2 < n2, and gcd(n1, n2) = 1.

It outputs integers a, n satisfying

n = n1n2, 0 ≤ a < n, a ≡ a1 (mod n1), and a ≡ a2 (mod n2),

and runs as follows:

b← n1 mod n2, t← b−1 mod n2, h ← (a2 − a1)t mod n2

a← a1 + n1h, n← n1n2

output a, n

Show that the algorithm correctly computes a and n as specified, and runs in time
O(len(n) len(n2)).

EXERCISE 4.15. Using the algorithm in the previous exercise as a subroutine, give
a simpleO(len(n)2) algorithm that takes as input integers n1, . . . , nk and a1, . . . , ak,
where the family {ni}ki=1 is pairwise relatively prime, and where ni > 1 and
0 ≤ ai < ni for i = 1, . . . , k, and outputs integers a and n such that 0 ≤ a < n,
n =

∏k
i=1 ni, and a ≡ ai (mod ni) for i = 1, . . . , k. The algorithm should

be “incremental,” in that it processes the pairs (ai, ni) one at a time, using time
O(len(n) len(ni)) per pair.

84 Euclid’s algorithm

EXERCISE 4.16. Suppose we are given α1, . . . , αk ∈ Z∗n. Show how to compute
α−1

1 , . . . , α−1
k by computing one multiplicative inverse modulo n, and performing

fewer than 3k multiplications modulo n. This result is useful, as in practice, if n is
several hundred bits long, it may take 10–20 times longer to compute multiplicative
inverses modulo n than to multiply modulo n.

4.4 Speeding up algorithms via modular computation
An important practical application of the above “computational” version (Theo-
rem 4.6) of the Chinese remainder theorem is a general algorithmic technique that
can significantly speed up certain types of computations involving long integers.
Instead of trying to describe the technique in some general form, we simply illus-
trate the technique by means of a specific example: integer matrix multiplication.

Suppose we have two m × m matrices A and B whose entries are large integers,
and we want to compute the product matrix C := AB. Suppose that for r, s =
1, . . . ,m, the entry of A at row r and column s is ars, and that for s, t = 1, . . . ,m,
the entry ofB at row s and column t is bst. Then for r, t = 1, . . . ,m, the entry ofC at
row r and column t is crt, which is given by the usual rule for matrix multiplication:

crt =
m
∑

s=1

arsbst. (4.1)

Suppose further that M is the maximum absolute value of the entries in A and
B, so that the entries in C are bounded in absolute value by M ′ := M2m. Let
` := len(M). To simplify calculations, let us also assume that m ≤ M (this is
reasonable, as we want to consider large values of M , greater than say 2100, and
certainly, we cannot expect to work with 2100 × 2100 matrices).

By just applying the formula (4.1), we can compute the entries of C using m3

multiplications of numbers of length at most `, and m3 additions of numbers of
length at most len(M ′), where len(M ′) ≤ 2` + len(m) = O(`). This yields a
running time of

O(m3`2). (4.2)

Using the Chinese remainder theorem, we can actually do much better than this, as
follows.

For every integer n > 1, and for all r, t = 1, . . . ,m, we have

crt ≡
m
∑

s=1

arsbst (mod n). (4.3)

4.4 Speeding up algorithms via modular computation 85

Moreover, if we compute integers c′rt such that

c′rt ≡
m
∑

s=1

arsbst (mod n) (4.4)

and if we also have

− n/2 ≤ c′rt < n/2 and n > 2M ′, (4.5)

then we must have

crt = c′rt. (4.6)

To see why (4.6) follows from (4.4) and (4.5), observe that (4.3) and (4.4) imply
that crt ≡ c′rt (mod n), which means that n divides (crt − c′rt). Then from the bound
|crt| ≤M ′ and from (4.5), we obtain

|crt − c′rt| ≤ |crt| + |c
′
rt| ≤M

′ + n/2 < n/2 + n/2 = n.

So we see that the quantity (crt − c′rt) is a multiple of n, while at the same time this
quantity is strictly less than n in absolute value; hence, this quantity must be zero.
That proves (4.6).

So from the above discussion, to compute C, it suffices to compute the entries
of C modulo n, where we have to make sure that we compute “balanced” remain-
ders in the interval [−n/2, n/2), rather than the more usual “least non-negative”
remainders.

To compute C modulo n, we choose a number of small integers n1, . . . , nk, such
that the family {ni}ki=1 is pairwise relatively prime, and the product n :=

∏k
i=1 ni

is just a bit larger than 2M ′. In practice, one would choose the ni’s to be small
primes, and a table of such primes could easily be computed in advance, so that
all problems up to a given size could be handled. For example, the product of all
primes of at most 16 bits is a number that has more than 90,000 bits. Thus, by
simply pre-computing and storing a table of small primes, we can handle input
matrices with quite large entries (up to about 45,000 bits).

Let us assume that we have pre-computed appropriate small primes n1, . . . , nk.
Further, we shall assume that addition and multiplication modulo each ni can be
done in constant time. This is reasonable from a practical (and theoretical) point
of view, since such primes easily “fit” into a machine word, and we can perform
modular addition and multiplication using a constant number of built-in machine
operations. Finally, we assume that we do not use more ni’s than are necessary, so
that len(n) = O(`) and k = O(`).

To compute C, we execute the following steps:

86 Euclid’s algorithm

1. For each i = 1, . . . , k, do the following:

(a) compute â(i)
rs ← ars mod ni for r, s = 1, . . . ,m,

(b) compute b̂(i)
st ← bst mod ni for s, t = 1, . . . ,m,

(c) for r, t = 1, . . . ,m, compute

ĉ
(i)
rt ←

m
∑

s=1

â
(i)
rs b̂

(i)
st mod ni.

2. For each r, t = 1, . . . ,m, apply the Chinese remainder theorem to ĉ(1)
rt , ĉ(2)

rt ,
. . . , ĉ(k)

rt , obtaining an integer crt, which should be computed as a balanced
remainder modulo n, so that −n/2 ≤ crt < n/2.

3. Output the matrix C, whose entry in row r and column t is crt.

Note that in step 2, if our Chinese remainder algorithm happens to be imple-
mented to return an integer a with 0 ≤ a < n, we can easily get a balanced
remainder by just subtracting n from a if a ≥ n/2.

The correctness of the above algorithm has already been established. Let us now
analyze its running time. The running time of steps 1a and 1b is easily seen to be
O(m2`2). Under our assumption about the cost of arithmetic modulo small primes,
the cost of step 1c is O(m3k), and since k = O(`), the cost of this step is O(m3`).
Finally, by Theorem 4.6, the cost of step 2 is O(m2`2). Thus, the total running time
of this algorithm is

O(m2`2 + m3`).

This is a significant improvement over (4.2); for example, if ` ≈ m, then the run-
ning time of the original algorithm isO(m5), while the running time of the modular
algorithm is O(m4).

EXERCISE 4.17. Apply the ideas above to the problem of computing the product
of two polynomials whose coefficients are large integers. First, determine the run-
ning time of the “obvious” algorithm for multiplying two such polynomials, then
design and analyze a “modular” algorithm.

4.5 An effective version of Fermat’s two squares theorem
We proved in Theorem 2.34 (in §2.8.4) that every prime p ≡ 1 (mod 4) can be
expressed as a sum of two squares of integers. In this section, we make this theorem
computationally effective; that is, we develop an efficient algorithm that takes as
input a prime p ≡ 1 (mod 4), and outputs integers r and t such that p = r2 + t2.

4.5 An effective version of Fermat’s two squares theorem 87

One essential ingredient in the proof of Theorem 2.34 was Thue’s lemma (The-
orem 2.33). This lemma asserts the existence of certain numbers, and we proved
it using the “pigeonhole principle,” which unfortunately does not translate directly
into an efficient algorithm to actually find these numbers. However, we can show
that these numbers arise as a “natural by-product” of the extended Euclidean algo-
rithm. To make this more precise, let us introduce some notation. For integers a, b,
with a ≥ b ≥ 0, let us define

EEA(a, b) :=
{

(ri, si, ti)
}λ+1
i=0 ,

where ri, si, and ti, for i = 0, . . . , λ + 1, are defined as in Theorem 4.3.

Theorem 4.7 (Effective Thue’s lemma). Let n, b, r∗, t∗ ∈ Z, with 0 ≤ b < n

and 0 < r∗ ≤ n < r∗t∗. Further, let EEA(n, b) = {(ri, si, ti)}λ+1
i=0 , and let j be the

smallest index (among 0, . . . , λ + 1) such that rj < r∗. Then, setting r := rj and
t := tj, we have

r ≡ bt (mod n), 0 ≤ r < r∗, and 0 < |t| < t∗.

Proof. Since r0 = n ≥ r∗ > 0 = rλ+1, the value of the index j is well defined;
moreover, j ≥ 1 and rj−1 ≥ r∗. It follows that

|tj| ≤ n/rj−1 (by part (v) of Theorem 4.3)

≤ n/r∗

< t∗ (since n < r∗t∗).

Since j ≥ 1, by part (iv) of Theorem 4.3, we have |tj| ≥ |t1| > 0. Finally, since
rj = nsj + btj, we have rj ≡ btj (mod n). 2

What this theorem says is that given n, b, r∗, t∗, to find the desired values r and t,
we run the extended Euclidean algorithm on input n, b. This generates a sequence
of remainders r0 > r1 > r2 > · · · , where r0 = n and r1 = b. If rj is the first
remainder in this sequence that falls below r∗, and if sj and tj are the corresponding
numbers computed by the extended Euclidean algorithm, then r := rj and t := tj
do the job.

The other essential ingredient in the proof of Theorem 2.34 was Theorem 2.31,
which guarantees the existence of a square root of −1 modulo p when p is a prime
congruent to 1 modulo 4. We need an effective version of this result as well. Later,
in Chapter 12, we will study the general problem of computing square roots modulo
primes. Right now, we develop an algorithm for this special case.

Assume we are given a prime p ≡ 1 (mod 4), and we want to compute β ∈ Z∗p
such that β2 = −1. By Theorem 2.32, it suffices to find γ ∈ Z∗p \ (Z∗p)2, since then
β := γ (p−1)/4 (which we can efficiently compute via repeated squaring) satisfies

88 Euclid’s algorithm

β2 = −1. While there is no known efficient, deterministic algorithm to find such
a γ, we do know that half the elements of Z∗p are squares and half are not (see
Theorem 2.20), which suggests the following simple “trial and error” strategy to
compute β:

repeat
choose γ ∈ Z∗p
compute β ← γ (p−1)/4

until β2 = −1
output β

As an algorithm, this is not fully specified, as we have to specify a procedure
for selecting γ in each loop iteration. A reasonable approach is to simply choose
γ at random: this would be an example of a probabilistic algorithm, a notion that
we will study in detail in Chapter 9. Let us assume for the moment that this makes
sense from a mathematical and algorithmic point of view, so that with each loop
iteration, we have a 50% chance of picking a “good” γ, that is, one that is not in
(Z∗p)2. From this, it follows that with high probability, we should find a “good”
γ in just a few loop iterations (the probability that after k loop iterations we still
have not found one is 1/2k), and that the expected number of loop iterations is just
2. The running time of each loop iteration is dominated by the cost of repeated
squaring, which is O(len(p)3). It follows that the expected running time of this
algorithm (we will make this notion precise in Chapter 9) is O(len(p)3).

Let us now put all the ingredients together to get an algorithm to find r, t such
that p = r2 + t2.

1. Find β ∈ Z∗p such that β2 = −1, using the above “trial and error” strategy.
2. Set b ← rep(β) (so that β = [b] and b ∈ {0, . . . , p − 1}).
3. Run the extended Euclidean algorithm on input p, b to obtain EEA(p, b),

and then apply Theorem 4.7 with n := p, b, and r∗ := t∗ := b√pc + 1, to
obtain the values r and t.

4. Output r, t.
When this algorithm terminates, we have r2 + t2 = p, as required: as we argued

in the proof of Theorem 2.34, since r ≡ bt (mod p) and b2 ≡ −1 (mod p), it
follows that r2 + t2 ≡ 0 (mod p), and since 0 < r2 + t2 < 2p, we must have
r2 + t2 = p. The (expected) running time of step 1 is O(len(p)3). The running
time of step 3 is O(len(p)2) (note that we can compute b√pc in time O(len(p)2),
using the algorithm in Exercise 3.29). Thus, the total (expected) running time is
O(len(p)3).

Example 4.4. One can check that p := 1009 is prime and p ≡ 1 (mod 4). Let us
express p as a sum of squares using the above algorithm. First, we need to find a

4.6 Rational reconstruction and applications 89

square root of −1 modulo p. Let us just try a random number, say 17, and raise this
to the power (p − 1)/4 = 252. One can calculate that 17252 ≡ 469 (mod 1009),
and 4692 ≡ −1 (mod 1009). So we were lucky with our first try. Now we run
the extended Euclidean algorithm on input p = 1009 and b = 469, obtaining the
following data:

i ri qi si ti
0 1009 1 0
1 469 2 0 1
2 71 6 1 -2
3 43 1 -6 13
4 28 1 7 -15
5 15 1 -13 28
6 13 1 20 -43
7 2 6 -33 71
8 1 2 218 -469
9 0 -469 1009

The first rj that falls below the threshold r∗ = b
√

1009c+1 = 32 is at j = 4, and so
we set r := 28 and t := −15. One verifies that r2 + t2 = 282 + 152 = 1009 = p. 2

It is natural to ask whether one can solve this problem without resorting to ran-
domization. The answer is “yes” (see §4.8), but the only known deterministic
algorithms for this problem are quite impractical (albeit polynomial time). This
example illustrates the utility of randomization as an algorithm design technique,
one that has proved to be invaluable in solving numerous algorithmic problems
in number theory; indeed, in §3.4 we already mentioned its use in connection with
primality testing, and we will explore many other applications as well (after putting
the notion of a probabilistic algorithm on firm mathematical ground in Chapter 9).

4.6 Rational reconstruction and applications
In the previous section, we saw how to apply the extended Euclidean algorithm
to obtain an effective version of Thue’s lemma. This lemma asserts that for given
integers n and b, there exists a pair of integers (r, t) satisfying r ≡ bt (mod n),
and contained in a prescribed rectangle, provided the area of the rectangle is large
enough, relative to n. In this section, we first prove a corresponding uniqueness the-
orem, under the assumption that the area of the rectangle is not too large; of course,
if r ≡ bt (mod n), then for any non-zero integer q, we also have rq ≡ b(tq) (mod n),
and so we can only hope to guarantee that the ratio r/t is unique. After proving this
uniqueness theorem, we show how to make this theorem computationally effective,
and then develop several very neat applications.

90 Euclid’s algorithm

The basic uniqueness statement is as follows:

Theorem 4.8. Let n, b, r∗, t∗ ∈ Z with r∗ ≥ 0, t∗ > 0, and n > 2r∗t∗. Further,
suppose that r, t, r′, t′ ∈ Z satisfy

r ≡ bt (mod n), |r| ≤ r∗, 0 < |t| ≤ t∗, (4.7)

r′ ≡ bt′ (mod n), |r′| ≤ r∗, 0 < |t′| ≤ t∗. (4.8)

Then r/t = r′/t′.

Proof. Consider the two congruences

r ≡ bt (mod n),

r′ ≡ bt′ (mod n).

Subtracting t times the second from t′ times the first, we obtain

rt′ − r′t ≡ 0 (mod n).

However, we also have

|rt′ − r′t| ≤ |r||t′| + |r′||t| ≤ 2r∗t∗ < n.

Thus, rt′−r′t is a multiple of n, but less than n in absolute value; the only possibility
is that rt′ − r′t = 0, which means r/t = r′/t′. 2

Now suppose that we are given n, b, r∗, t∗ ∈ Z as in the above theorem; more-
over, suppose that there exist r, t ∈ Z satisfying (4.7), but that these values are not
given to us. Note that under the hypothesis of Theorem 4.8, Thue’s lemma cannot
be used to ensure the existence of such r and t, but in our eventual applications,
we will have other reasons that will guarantee this. We would like to find r′, t′ ∈ Z
satisfying (4.8), and if we do this, then by the theorem, we know that r/t = r′/t′.
We call this the rational reconstruction problem. We can solve this problem
efficiently using the extended Euclidean algorithm; indeed, just as in the case of
our effective version of Thue’s lemma, the desired values of r′ and t′ appear as
“natural by-products” of that algorithm. To state the result precisely, let us recall
the notation we introduced in the last section: for integers a, b, with a ≥ b ≥ 0, we
defined

EEA(a, b) :=
{

(ri, si, ti)
}λ+1
i=0 ,

where ri, si, and ti, for i = 0, . . . , λ + 1, are defined as in Theorem 4.3.

Theorem 4.9 (Rational reconstruction). Let n, b, r∗, t∗ ∈ Z with 0 ≤ b < n,
0 ≤ r∗ < n, and t∗ > 0. Further, let EEA(n, b) = {(ri, si, ti)}λ+1

i=0 , and let j be the
smallest index (among 0, . . . , λ + 1) such that rj ≤ r∗, and set

r′ := rj, s′ := sj, and t′ := tj.

4.6 Rational reconstruction and applications 91

Finally, suppose that there exist r, s, t ∈ Z such that

r = ns + bt, |r| ≤ r∗, and 0 < |t| ≤ t∗.

Then we have:

(i) 0 < |t′| ≤ t∗;
(ii) if n > 2r∗t∗, then for some non-zero integer q,

r = r′q, s = s′q, and t = t′q.

Proof. Since r0 = n > r∗ ≥ 0 = rλ+1, the value of j is well defined, and moreover,
j ≥ 1, and we have the inequalities

0 ≤ rj ≤ r∗ < rj−1, 0 < |tj|, |r| ≤ r∗, and 0 < |t| ≤ t∗, (4.9)

along with the identities

rj−1 = nsj−1 + btj−1, (4.10)

rj = nsj + btj, (4.11)

r = ns + bt. (4.12)

We now turn to part (i) of the theorem. Our goal is to prove that

|tj| ≤ t∗. (4.13)

This is the hardest part of the proof. To this end, let

ε := sjtj−1 − sj−1tj, µ := (tj−1s − sj−1t)/ε, ν := (sjt − tjs)/ε.

Since ε = ±1, the numbers µ and ν are integers; moreover, one may easily verify
that they satisfy the equations

sjµ + sj−1ν = s, (4.14)

tjµ + tj−1ν = t. (4.15)

We now use these identities to prove (4.13). We consider three cases:

(i) Suppose ν = 0. In this case, (4.15) implies tj | t, and since t 6= 0, this
implies |tj| ≤ |t| ≤ t∗.

(ii) Suppose µν < 0. In this case, since tj and tj−1 have opposite sign, (4.15)
implies |t| = |tjµ| + |tj−1ν| ≥ |tj|, and so again, we have |tj| ≤ |t| ≤ t∗.

(iii) The only remaining possibility is that ν 6= 0 and µν ≥ 0. We argue that
this is impossible. Adding n times (4.14) to b times (4.15), and using the
identities (4.10), (4.11), and (4.12), we obtain

rjµ + rj−1ν = r.

92 Euclid’s algorithm

If ν 6= 0 and µ and ν had the same sign, we would have |r| = |rjµ|+|rj−1ν| ≥
rj−1, and hence rj−1 ≤ |r| ≤ r∗; however, this contradicts the fact that
rj−1 > r

∗.

That proves the inequality (4.13). We now turn to the proof of part (ii) of the
theorem, which relies critically on this inequality. Assume that

n > 2r∗t∗. (4.16)

From (4.11) and (4.12), we have

rj ≡ btj (mod n) and r ≡ bt (mod n).

Combining this with the inequalities (4.9), (4.13), and (4.16), we see that the
hypotheses of Theorem 4.8 are satisfied, and so we may conclude that

rtj − rjt = 0. (4.17)

Subtracting tj times (4.12) from t times (4.11), and using the identity (4.17), we
obtain n(stj − sjt) = 0, and hence

stj − sjt = 0. (4.18)

From (4.18), we see that tj | sjt, and since gcd(sj, tj) = 1, we must have tj | t. So
t = tjq for some q, and we must have q 6= 0 since t 6= 0. Substituting tjq for t in
equations (4.17) and (4.18) yields r = rjq and s = sjq. That proves part (ii) of the
theorem. 2

In our applications in this text, we shall only directly use part (ii) of this theorem;
however, part (i) has applications as well (see Exercise 4.18).

4.6.1 Application: recovering fractions from their decimal expansions
It should be a familiar fact to the reader that every real number has a decimal
expansion, and that this decimal expansion is unique, provided one rules out those
expansions that end in an infinite run of 9’s (e.g., 1/10 = 0.1000 · · · = 0.0999 · · ·).

Now suppose that Alice and Bob play a game. Alice thinks of a rational number
z := s/t, where s and t are integers with 0 ≤ s < t, and tells Bob some of the high-
order digits in the decimal expansion of z. Bob’s goal in the game is to determine
z. Can he do this?

The answer is “yes,” provided Bob knows an upper bound M on t, and provided
Alice gives Bob enough digits. Of course, Bob probably remembers from grade
school that the decimal expansion of z is ultimately periodic, and that given enough
digits of z so that the periodic part is included, he can recover z; however, this
technique is quite useless in practice, as the length of the period can be huge —

4.6 Rational reconstruction and applications 93

Θ(M) in the worst case (see Exercises 4.21–4.23 below). The method we discuss
here requires only O(len(M)) digits.

Suppose Alice gives Bob the high-order k digits of z, for some k ≥ 1. That is, if

z = 0 . z1z2z3 · · · (4.19)

is the decimal expansion of z, then Alice gives Bob z1, . . . , zk. Now, if 10k is
much smaller than M2, the number z is not even uniquely determined by these
digits, since there are Ω(M2) distinct rational numbers of the form s/t, with
0 ≤ s < t ≤ M (see Exercise 1.33). However, if 10k > 2M2, then not only
is z uniquely determined by z1, . . . , zk, but using Theorem 4.9, Bob can efficiently
compute it.

We shall presently describe efficient algorithms for both Alice and Bob, but
before doing so, we make a few general observations about the decimal expansion
of z. Let e be an arbitrary non-negative integer, and suppose that the decimal
expansion of z is as in (4.19). Observe that

10ez = z1 · · · ze . ze+1ze+2 · · · .

It follows that

b10ezc = z1 · · · ze . 0 . (4.20)

Since z = s/t, if we set r := 10es mod t, then 10es = b10ezct + r, and dividing
this by t, we have 10ez = b10ezc + r/t, where r/t ∈ [0, 1). Therefore,

10es mod t
t

= 0 . ze+1ze+2ze+3 · · · . (4.21)

Next, consider Alice. Based on the above discussion, Alice may use the follow-
ing simple, iterative algorithm to compute z1, . . . , zk, for arbitrary k ≥ 1, after she
chooses s and t:

x1 ← s

for i← 1 to k do
yi ← 10xi
zi ← byi/tc
xi+1 ← yi mod t

output z1, . . . , zk

Correctness follows easily from the observation that for each i = 1, 2, . . . , we
have xi = 10i−1s mod t; indeed, applying (4.21) with e = i − 1, we have xi/t =
0 . zizi+1zi+2 · · · , and consequently, by (4.20) with e = 1 and xi/t in the role of z,
we have b10xi/tc = zi. The total time for Alice’s computation is O(k len(M)),
since each loop iteration takes time O(len(M)).

94 Euclid’s algorithm

Finally, consider Bob. Given the high-order digits z1, . . . , zk of z = s/t, along
with the upper bound M on t, he can compute z as follows:

1. Compute n← 10k and b←
∑k
i=1 zi10k−i.

2. Run the extended Euclidean algorithm on input n, b to obtain EEA(n, b),
and then apply Theorem 4.9 with n, b, and r∗ := t∗ := M , to obtain the
values r′, s′, t′.

3. Output the rational number −s′/t′.
Let us analyze this algorithm, assuming that 10k > 2M2.
For correctness, we must show that z = −s′/t′. To prove this, observe that by

(4.20) with e = k, we have b = bnzc = bns/tc. Moreover, if we set r := ns mod t,
then we have

r = ns − bt, 0 ≤ r < t ≤ r∗, 0 < t ≤ t∗, and n > 2r∗t∗.

It follows that the integers s′, t′ from Theorem 4.9 satisfy s = s′q and −t = t′q

for some non-zero integer q. Thus, s/t = −s′/t′, as required. As a bonus, since
the extended Euclidean algorithm guarantees that gcd(s′, t′) = 1, not only do we
obtain z, but we obtain z expressed as a fraction in lowest terms.

We leave it to the reader to verify that Bob’s computation may be performed in
time O(k2).

We conclude that both Alice and Bob can successfully play this game with
k chosen so that k = O(len(M)), in which case, their algorithms run in time
O(len(M)2).

Example 4.5. Alice chooses integers s, t, with 0 ≤ s < t ≤ 1000, and tells
Bob the high-order seven digits in the decimal expansion of z := s/t, from
which Bob should be able to compute z. Suppose s = 511 and t = 710. Then
s/t = 0.7197183098591549 · · · . Bob receives the digits 7, 1, 9, 7, 1, 8, 3, and com-
putes n = 107 and b = 7197183. Running the extended Euclidean algorithm on
input n, b, Bob obtains the data in Fig. 4.1. The first rj that meets the threshold
r∗ = 1000 is at j = 10, and Bob reads off s′ = 511 and t′ = −710, from which he
obtains z = −s′/t′ = 511/710.

Another interesting phenomenon to observe in Fig. 4.1 is that the fractions−si/ti
are very good approximations to the fraction b/n = 7197183/10000000; indeed,
if we compute the error terms b/n + si/ti for i = 1, . . . , 5, we get (approximately)

0.72, −0.28, 0.053, −0.03, 0.0054.

Thus, we can approximate the “complicated” fraction 7197183/10000000 by the
“very simple” fraction 5/7, introducing an absolute error of less than 0.006. Exer-
cise 4.18 explores this “data compression” capability of Euclid’s algorithm in more
generality. 2

4.6 Rational reconstruction and applications 95

i ri qi si ti
0 10000000 1 0
1 7197183 1 0 1
2 2802817 2 1 -1
3 1591549 1 -2 3
4 1211268 1 3 -4
5 380281 3 -5 7
6 70425 5 18 -25
7 28156 2 -95 132
8 14113 1 208 -289
9 14043 1 -303 421

10 70 200 511 -710
11 43 1 -102503 142421
12 27 1 103014 -143131
13 16 1 -205517 285552
14 11 1 308531 -428683
15 5 2 -514048 714235
16 1 5 1336627 -1857153
17 0 -7197183 10000000

Fig. 4.1. Bob’s data from the extended Euclidean algorithm

4.6.2 Application: Chinese remaindering with errors
One interpretation of the Chinese remainder theorem is that if we “encode” an
integer a, with 0 ≤ a < n, as the sequence (a1, . . . , ak), where ai = a mod ni for
i = 1, . . . , k, then we can efficiently recover a from this encoding. Here, of course,
n = n1 · · · nk, and the family {ni}ki=1 is pairwise relatively prime.

Suppose that Alice encodes a as (a1, . . . , ak), and sends this encoding to Bob
over some communication network; however, because the network is not perfect,
during the transmission of the encoding, some (but hopefully not too many) of
the values a1, . . . , ak may be corrupted. The question is, can Bob still efficiently
recover the original a from its corrupted encoding?

To make the problem more precise, suppose that the original, correct encod-
ing of a is (a1, . . . , ak), and the corrupted encoding is (b1, . . . , bk). Let us define
G ⊆ {1, . . . , k} to be the set of “good” positions i with ai = bi, and B ⊆ {1, . . . , k}
to be the set of “bad” positions i with ai 6= bi. We shall assume that |B| ≤ `, where
` is some specified parameter.

Of course, if Bob hopes to recover a, we need to build some redundancy into
the system; that is, we must require that 0 ≤ a ≤ M for some bound M that is

96 Euclid’s algorithm

somewhat smaller than n. Now, if Bob knew the location of bad positions, and if
the product of the ni’s at the good positions exceeds M , then Bob could simply
discard the errors, and reconstruct a by applying the Chinese remainder theorem to
the ai’s and ni’s at the good positions. However, in general, Bob will not know a
priori the locations of the bad positions, and so this approach will not work.

Despite these apparent difficulties, Theorem 4.9 may be used to solve the prob-
lem quite easily, as follows. Let P be an upper bound on the product of any ` of the
integers n1, . . . , nk (e.g., we could take P to be the product of the ` largest numbers
among n1, . . . , nk). Further, let us assume that n > 2MP 2.

Now, suppose Bob obtains the corrupted encoding (b1, . . . , bk). Here is what
Bob does to recover a:

1. Apply the Chinese remainder theorem, obtaining the integer b satisfying
0 ≤ b < n and b ≡ bi (mod ni) for i = 1, . . . , k.

2. Run the extended Euclidean algorithm on input n, b to obtain EEA(n, b),
and then apply Theorem 4.9 with n, b, r∗ := MP and t∗ := P , to obtain
values r′, s′, t′.

3. If t′ | r′, output the integer r′/t′; otherwise, output “error.”

We claim that the above procedure outputs a, under our assumption that the setB
of bad positions is of size at most `. To see this, let t :=

∏

i∈B ni. By construction,
we have 1 ≤ t ≤ P . Also, let r := at, and note that 0 ≤ r ≤ r∗ and 0 < t ≤ t∗. We
claim that

r ≡ bt (mod n). (4.22)

To show that (4.22) holds, it suffices to show that

at ≡ bt (mod ni) (4.23)

for all i = 1, . . . , k. To show this, for each index i we consider two cases:

Case 1: i ∈ G. In this case, we have ai = bi, and therefore,

at ≡ ait ≡ bit ≡ bt (mod ni).

Case 2: i ∈ B. In this case, we have ni | t, and therefore,

at ≡ 0 ≡ bt (mod ni).

Thus, (4.23) holds for all i = 1, . . . , k, and so it follows that (4.22) holds. There-
fore, the values r′, t′ obtained from Theorem 4.9 satisfy

r′

t′
=
r

t
=
at

t
= a.

4.6 Rational reconstruction and applications 97

One easily checks that both the procedures to encode and decode a value a run in
time O(len(n)2).

The above scheme is an example of an error correcting code, and is actually
the integer analog of a Reed–Solomon code.

Example 4.6. Suppose we want to encode a 1024-bit message as a sequence of 16-
bit blocks, so that the above scheme can correct up to 3 corrupted blocks. Without
any error correction, we would need just 1024/16 = 64 blocks. However, to correct
this many errors, we need a few extra blocks; in fact, 7 will do.

Of course, a 1024-bit message can naturally be viewed as an integer a in the
set {0, . . . , 21024 − 1}, and the ith 16-bit block in the encoding can be viewed as
an integer ai in the set {0, . . . , 216 − 1}. Setting k := 71, we select k primes,
n1, . . . , nk, each 16-bits in length. In fact, let us choose n1, . . . , nk to be the largest
k primes under 216. If we do this, then the smallest prime among the ni’s turns out
to be 64717, which is greater than 215.98. We may set M := 21024, and since we
want to correct up to 3 errors, we may set P := 23·16. Then with n :=

∏

i ni, we
have

n > 271·15.98 = 21134.58 > 21121 = 21+1024+6·16 = 2MP 2.

Thus, with these parameter settings, the above scheme will correct up to 3 cor-
rupted blocks. This comes at a cost of increasing the length of the message from
1024 bits to 71 · 16 = 1136 bits, an increase of about 11%. 2

4.6.3 Applications to symbolic algebra
Rational reconstruction also has a number of applications in symbolic algebra. We
briefly sketch one such application here. Suppose that we want to find the solution
v to the equation vA = w, where we are given as input a non-singular square
integer matrix A and an integer vector w. The solution vector v will, in general,
have rational entries. We stress that we want to compute the exact solution v, and
not some floating point approximation to it. Now, we could solve for v directly
using Gaussian elimination; however, the intermediate quantities computed by that
algorithm would be rational numbers whose numerators and denominators might
get quite large, leading to a rather lengthy computation (however, it is possible to
show that the overall running time is still polynomial in the input length).

Another approach is to compute a solution vector modulo n, where n is a power
of a prime that does not divide the determinant of A. Provided n is large enough,
one can then recover the solution vector v using rational reconstruction. With this
approach, all of the computations can be carried out using arithmetic on integers
not too much larger than n, leading to a more efficient algorithm. More of the
details of this procedure are developed later, in Exercise 14.18.

98 Euclid’s algorithm

EXERCISE 4.18. Let n, b ∈ Z with 0 ≤ b < n, and let EEA(n, b) = {(ri, si, ti)}λ+1
i=0 .

This exercise develops some key properties of the fractions −si/ti as approxima-
tions to b/n. For i = 1, . . . , λ + 1, let εi := b/n + si/ti.

(a) Show that εi = ri/tin for i = 1, . . . , λ + 1.

(b) Show that successive εi’s strictly decrease in absolute value, and alternate
in sign.

(c) Show that |εi| < 1/t2i for i = 1, . . . , λ, and ελ+1 = 0.

(d) Show that for all s, t ∈ Z with t 6= 0, if |b/n − s/t| < 1/2t2, then
s/t = −si/ti for some i = 1, . . . , λ + 1. Hint: use part (ii) of Theorem 4.9.

(e) Consider a fixed index i ∈ {2, . . . , λ + 1}. Show that for all s, t ∈ Z, if
0 < |t| ≤ |ti| and |b/n − s/t| ≤ |εi|, then s/t = −si/ti. In this sense, −si/ti
is the unique, best approximation to b/n among all fractions of denominator
at most |ti|. Hint: use part (i) of Theorem 4.9.

EXERCISE 4.19. Using the decimal approximation π ≈ 3.141592654, apply
Euclid’s algorithm to calculate a rational number of denominator less than 1000
that is within 10−6 of π. Illustrate the computation with a table as in Fig. 4.1.

EXERCISE 4.20. Show that given integers s, t, k, with 0 ≤ s < t, and k > 0, we
can compute the kth digit in the decimal expansion of s/t in timeO(len(k) len(t)2).

For the following exercises, we need a definition. Let Ψ = {zi}∞i=1 be a sequence
of elements drawn from some arbitrary set. For integers k ≥ 0 and ` ≥ 1, we say
that Ψ is (k, `)-periodic if zi = zi+` for all i > k; in addition, we say that Ψ is
ultimately periodic if it is (k, `)-periodic for some (k, `).

EXERCISE 4.21. Show that if a sequence Ψ is ultimately periodic, then it is
(k∗, `∗)-periodic for some uniquely determined pair (k∗, `∗) for which the follow-
ing holds: for every pair (k, `) such that Ψ is (k, `)-periodic, we have k∗ ≤ k and
`∗ | `.

The value `∗ in the above exercise is called the period of Ψ, and k∗ is called the
pre-period of Ψ. If its pre-period is zero, then Ψ is called purely periodic.

EXERCISE 4.22. Let z be a real number whose decimal expansion is an ultimately
periodic sequence. Show that z is rational.

EXERCISE 4.23. Let z = s/t ∈ Q, where s and t are relatively prime integers with
0 ≤ s < t. Show that:

(a) there exist integers k, k′ such that 0 ≤ k < k′ and s10k ≡ s10k
′

(mod t);

(b) for all integers k, k′ with 0 ≤ k < k′, the decimal expansion of z is
(k, k′ − k)-periodic if and only if s10k ≡ s10k

′
(mod t);

4.7 The RSA cryptosystem 99

(c) if gcd(10, t) = 1, then the decimal expansion of z is purely periodic with
period equal to the multiplicative order of 10 modulo t;

(d) more generally, if k is the smallest non-negative integer such that 10 and
t′ := t/ gcd(10k, t) are relatively prime, then the decimal expansion of z is
ultimately periodic with pre-period k and period equal to the multiplicative
order of 10 modulo t′.

A famous conjecture of Artin postulates that for every integer d, not equal to −1
or to the square of an integer, there are infinitely many primes t such that d has
multiplicative order t − 1 modulo t. If Artin’s conjecture is true, then by part (c)
of the previous exercise, there are infinitely many primes t such that the decimal
expansion of s/t, for every swith 0 < s < t, is a purely periodic sequence of period
t − 1. In light of these observations, the “grade school” method of computing a
fraction from its decimal expansion using the period is hopelessly impractical.

4.7 The RSA cryptosystem
One of the more exciting uses of number theory in recent decades is its application
to cryptography. In this section, we give a brief overview of the RSA cryptosystem,
named after its inventors Rivest, Shamir, and Adleman. At this point in the text,
we already have the concepts and tools at our disposal necessary to understand the
basic operation of this system, even though a full understanding of the system will
require other ideas that will be developed later in the text.

Suppose that Alice wants to send a secret message to Bob over an insecure net-
work. An adversary may be able to eavesdrop on the network, and so sending the
message “in the clear” is not an option. Using older, more traditional cryptographic
techniques would require that Alice and Bob share a secret key between them;
however, this creates the problem of securely generating such a shared secret. The
RSA cryptosystem is an example of a public key cryptosystem. To use the system,
Bob simply places a “public key” in the equivalent of an electronic telephone book,
while keeping a corresponding “private key” secret. To send a secret message to
Bob, Alice obtains Bob’s public key from the telephone book, and uses this to
encrypt her message. Upon receipt of the encrypted message, Bob uses his private
key to decrypt it, obtaining the original message.

Here is how the RSA cryptosystem works. To generate a public key/private key
pair, Bob generates two very large, random primes p and q, with p 6= q. To be
secure, p and q should be quite large; in practice, they are chosen to be around 512
bits in length. Efficient algorithms for generating such primes exist, and we shall
discuss them in detail later in the text (that there are sufficiently many primes of a
given bit length will be discussed in Chapter 5; algorithms for generating them will

100 Euclid’s algorithm

be discussed at a high level in §9.4, and in greater detail in Chapter 10). Next, Bob
computes n := pq. Bob also selects an integer e > 1 such that gcd(e,ϕ(n)) = 1,
where ϕ is Euler’s phi function. Here, ϕ(n) = (p−1)(q−1). Finally, Bob computes
d := e−1 mod ϕ(n), using the extended Euclidean algorithm. The public key is the
pair (n, e), and the private key is the pair (n, d). The integer e is called the “encryp-
tion exponent” and d is called the “decryption exponent.” In practice, the integers
n and d are about 1024 bits in length, while e is usually significantly shorter.

After Bob publishes his public key (n, e), Alice may send a secret message to
Bob as follows. Suppose that a message is encoded in some canonical way as a
number between 0 and n − 1 — we can always interpret a bit string of length less
than len(n) as such a number. Thus, we may assume that a message is an element
α of Zn. To encrypt the message α, Alice simply computes β := αe using repeated
squaring. The encrypted message is β. When Bob receives β, he computes γ := βd,
and interprets γ as a message.

The most basic requirement of any encryption scheme is that decryption should
“undo” encryption. In this case, this means that for all α ∈ Zn, we should have

(αe)d = α. (4.24)

If α ∈ Z∗n, then this is clearly the case, since we have ed = 1 + ϕ(n)k for some
positive integer k, and hence by Euler’s theorem (Theorem 2.13), we have

(αe)d = αed = α1+ϕ(n)k = α · αϕ(n)k = α.

To argue that (4.24) holds in general, let α be an arbitrary element of Zn, and
suppose α = [a]n. If a ≡ 0 (mod p), then trivially aed ≡ 0 (mod p); otherwise,

aed ≡ a1+ϕ(n)k ≡ a · aϕ(n)k ≡ a (mod p),

where the last congruence follows from the fact that ϕ(n)k is a multiple of p − 1,
which is a multiple of the multiplicative order of a modulo p (again by Euler’s the-
orem). Thus, we have shown that aed ≡ a (mod p). The same argument shows that
aed ≡ a (mod q), and these two congruences together imply that aed ≡ a (mod n).
Thus, we have shown that equation (4.24) holds for all α ∈ Zn.

Of course, the interesting question about the RSA cryptosystem is whether or not
it really is secure. Now, if an adversary, given only the public key (n, e), were able
to factor n, then he could easily compute the decryption exponent d himself using
the same algorithm used by Bob. It is widely believed that factoring n is computa-
tionally infeasible, for sufficiently large n, and so this line of attack is ineffective,
barring a breakthrough in factorization algorithms. Indeed, while trying to factor
n by brute-force search is clearly infeasible, there are much faster algorithms, but
even these are not fast enough to pose a serious threat to the security of the RSA

4.7 The RSA cryptosystem 101

cryptosystem. We shall discuss some of these faster algorithms in some detail later
in the text (in Chapter 15).

Can one break the RSA cryptosystem without factoring n? For example, it is
natural to ask whether one can compute the decryption exponent d without having
to go to the trouble of factoring n. It turns out that the answer to this question is
“no”: if one could compute the decryption exponent d, then ed − 1 would be a
multiple of ϕ(n), and as we shall see later in §10.4, given any multiple of ϕ(n),
we can easily factor n. Thus, computing the decryption exponent is equivalent to
factoring n, and so this line of attack is also ineffective. But there still could be
other lines of attack. For example, even if we assume that factoring large numbers
is infeasible, this is not enough to guarantee that for a given encrypted message β,
the adversary is unable to compute βd (although nobody actually knows how to do
this without first factoring n).

The reader should be warned that the proper notion of security for an encryp-
tion scheme is quite subtle, and a detailed discussion of this is well beyond the
scope of this text. Indeed, the simple version of RSA presented here suffers from a
number of security problems (because of this, actual implementations of public-
key encryption schemes based on RSA are somewhat more complicated). We
mention one such problem here (others are examined in some of the exercises
below). Suppose an eavesdropping adversary knows that Alice will send one of
a few, known, candidate messages. For example, an adversary may know that
Alice’s message is either “let’s meet today” or “let’s meet tomorrow.” In this case,
the adversary can encrypt for himself each of the candidate messages, intercept
Alice’s actual encrypted message, and then by simply comparing encryptions, the
adversary can determine which particular message Alice encrypted. This type of
attack works simply because the encryption algorithm is deterministic, and in fact,
any deterministic encryption algorithm will be vulnerable to this type of attack. To
avoid this type of attack, one must use a probabilistic encryption algorithm. In the
case of the RSA cryptosystem, this is often achieved by padding the message with
some random bits before encrypting it (but even this must be done carefully).

EXERCISE 4.24. This exercise develops a method to speed up RSA decryption.
Suppose that we are given two distinct `-bit primes, p and q, an element β ∈ Zn,
where n := pq, and an integer d, where 1 < d < ϕ(n). Using the algorithm from
Exercise 3.35, we can compute βd at a cost of essentially 2` squarings in Zn. Show
how this can be improved, making use of the factorization of n, so that the total cost
is essentially that of ` squarings in Zp and ` squarings in Zq, leading to a roughly
four-fold speed-up in the running time.

EXERCISE 4.25. Alice submits a bid to an auction, and so that other bidders cannot

102 Euclid’s algorithm

see her bid, she encrypts it under the public key of the auction service. Suppose
that the auction service provides a public key for an RSA encryption scheme, with
a modulus n. Assume that bids are encoded simply as integers between 0 and n− 1
prior to encryption. Also, assume that Alice submits a bid that is a “round number,”
which in this case means that her bid is a number that is divisible by 10. Show how
an eavesdropper can submit an encryption of a bid that exceeds Alice’s bid by 10%,
without even knowing what Alice’s bid is. In particular, your attack should work
even if the space of possible bids is very large.

EXERCISE 4.26. To speed up RSA encryption, one may choose a very small
encryption exponent. This exercise develops a “small encryption exponent attack”
on RSA. Suppose Bob, Bill, and Betty have RSA public keys with moduli n1, n2,
and n3, and all three use encryption exponent 3. Assume that {ni}3

i=1 is pairwise
relatively prime. Suppose that Alice sends an encryption of the same message to
Bob, Bill, and Betty — that is, Alice encodes her message as an integer a, with
0 ≤ a < min{n1, n2, n3}, and computes the three encrypted messages βi := [a3]ni ,
for i = 1, . . . , 3. Show how to recover Alice’s message from these three encrypted
messages.

EXERCISE 4.27. To speed up RSA decryption, one might choose a small decryp-
tion exponent, and then derive the encryption exponent from this. This exercise
develops a “small decryption exponent attack” on RSA. Suppose n = pq, where
p and q are distinct primes with len(p) = len(q). Let d and e be integers such
that 1 < d < ϕ(n), 1 < e < ϕ(n), and de ≡ 1 (mod ϕ(n)). Further, assume
that d < n1/4/3. Show how to efficiently compute d, given n and e. Hint: since
ed ≡ 1 (mod ϕ(n)), it follows that ed = 1+ϕ(n)k for an integer k with 0 < k < d;
let r := nk− ed, and show that |r| < n3/4; next, show how to recover d (along with
r and k) using Theorem 4.9.

4.8 Notes
The Euclidean algorithm as we have presented it here is not the fastest known
algorithm for computing greatest common divisors. The asymptotically fastest
known algorithm for computing the greatest common divisor of two numbers of
bit length at most ` runs in time O(` len(`)) on a RAM, which is due to Schönhage
[85]. The same algorithm leads to Boolean circuits of size O(` len(`)2 len(len(`))),
which using Fürer’s result [38], can be reduced to O(` len(`)2 2O(log∗ n)). The same
complexity results also hold for the extended Euclidean algorithm, as well as for
Chinese remaindering, Thue’s lemma, and rational reconstruction.

Experience suggests that such fast algorithms for greatest common divisors are
not of much practical value, unless the integers involved are very large — at least

4.8 Notes 103

several tens of thousands of bits in length. The extra “log” factor and the rather
large multiplicative constants seem to slow things down too much.

The binary gcd algorithm (Exercise 4.6) is due to Stein [100]. The extended
binary gcd algorithm (Exercise 4.10) was first described by Knuth [56], who
attributes it to M. Penk. Our formulation of both of these algorithms closely follows
that of Menezes, van Oorschot, and Vanstone [66]. Experience suggests that the
binary gcd algorithm is faster in practice than Euclid’s algorithm.

Schoof [87] presents (among other things) a deterministic, polynomial-time
algorithm that computes a square root of −1 modulo p for any given prime p ≡
1 (mod 4). If we use this algorithm in §4.5, we get a deterministic, polynomial-
time algorithm to compute integers r and t such that p = r2 + t2.

Our Theorem 4.9 is a generalization of one stated in Wang, Guy, and Davenport
[103]. One can generalize Theorem 4.9 using the theory of continued fractions.
With this, one can generalize Exercise 4.18 to deal with rational approximations to
irrational numbers. More on this can be found, for example, in the book by Hardy
and Wright [46].

The application of Euclid’s algorithm to computing a rational number from the
first digits of its decimal expansion was observed by Blum, Blum, and Shub [17],
where they considered the possibility of using such sequences of digits as a pseudo-
random number generator — the conclusion, of course, is that this is not such a
good idea.

The RSA cryptosystem was invented by Rivest, Shamir, and Adleman [82].
There is a vast literature on cryptography. One starting point is the book by
Menezes, van Oorschot, and Vanstone [66]. The attack in Exercise 4.27 is due
to Wiener [110]; this attack was recently strengthened by Boneh and Durfee [19].

